Skip to main content

Using a GPU

Mode:Batch Realtime   Deployments:Virtual Appliance

Enabling GPU inference

If the host machine has the capability to pass-thru a GPU to a VM, then the Appliance can use it to speed up transcription. By default, GPU mode is disabled; to enable it run the following command from the Management API:

Batch Mode

Mode:Batch   

curl -L -u admin:$PWD -X 'POST' \
  "http://${APPLIANCE_HOST}/v2/management/host/gpu" \
  -H 'Content-Type: application/json' \
  -d '{"gpu_enabled": true}'

To query the GPU mode, run the similar command

curl -L -u admin:$PWD -X 'GET' \
  "http://${APPLIANCE_HOST}/v2/management/host/gpu"

The response will be a JSON array listing the languages for which GPU support is enabled.

["en"]

if GPU is disabled, an empty list [] will be returned.

Realtime Mode

Mode:Realtime   

curl -L -u admin:$PWD -X 'POST' \
  "http://${APPLIANCE_HOST}/v2/management/host/realtime/gpu" \
  -H 'Content-Type: application/json' \
  -d '{"gpu_enabled": true}'

To query the GPU mode, run the similar command

curl -L -u admin:$PWD -X 'GET' \
  "http://${APPLIANCE_HOST}/v2/management/host/realtime/gpu"

This will return a json object containing a boolean gpu_enabled and the maximum number of concurrent streams for realtime inference.

{
  "gpu_enabled": false,
  "max_streams": 9
}

Hardware Requirements for GPU

These are the same as the requirements for the GPU Inference Container, please see that section for details.

Because the OVA is self-contained, you only need to consider the GPU memory, driver version on the host, and CUDA capability level.

GPU Configuration

To help protect the performance of the GPU, configuration options for the GPU have been provided. This configuration can be fetched/updated via the Appliance Management API.

Batch Mode

Mode:Batch   

Get the current configuration

curl -L -u admin:$PWD -X 'GET' \
  "http://${APPLIANCE_HOST}/v2/management/host/gpu"

Example Response

{
  "gpu_enabled": false,
  "languages": [],
  "primary_operating_point": "enhanced",
  "max_jobs": 12
}
  • gpu_enabled - GPU transcription enabled, true/false
  • languages - The languages that are enabled for GPU transcription
  • primary_operating_point - Primary operating point to assume when controlling the GPU load
  • max_jobs - Maximum number of jobs of the chosen primary_operating_point that will be allowed to run concurrently

Update the configuration

curl -L -u admin:$PWD -X 'POST' \
  "http://${APPLIANCE_HOST}/v2/management/host/gpu/config" \
  -H 'Content-Type: application/json' \
  -d '{
  "primary_operating_point": "standard",
  "max_jobs": 1
}'
  • primary_operating_point - Primary operating point to assume when controlling the GPU load
  • max_jobs - Maximum number of jobs of the chosen primary_operating_point that will be allowed to run concurrently

When controlling gpu load, we require a primary operating point to be set; this is the main operating point you are using for the majority of your jobs. As different operating points apply differing levels of load, setting primary operating point ahead of time helps us to schedule jobs efficiently. If you set the primary operating point to one value, it will not stop you from running other operating points (one enhanced job is roughly equivalent to six standard jobs).

Some appropriate settings for max_jobs are listed below, we found these to produce a good balance of throughput, cost and stability during our benchmarking tests. Depending on the audio files being processed, it may be appropriate to optimise these values to better fit a given use case.

Standard Operating Point

  • max_jobs - 40

Enhanced Operating Point

  • max_jobs - 12
Note

When scaling mode is set to adaptive, depending on the file length, one job may be split up into 4 or more simple jobs (i.e., a job that uses a single thread) (see Scaling) the max_jobs above refers to these simple jobs.

e.g., if max jobs was set to 12, you could run up to

3x adaptive jobs with file lengths of > 15 min

OR

12x simple jobs

OR

2x adaptive jobs with file lengths of > 15 min AND 4x simple jobs

Realtime Mode

Mode:Realtime   

For realtime mode we limit the total number of realtime streams running concurrently, this helps to protect running sessions from poor performance and or crashes.

Note

In the current early access build of the realtime virtual appliance there is no setting to limit sessions based on operating point, to avoid poor performance we suggest not to mix operating points.

Get the current configuration

curl -L -u admin:$PWD -X 'GET' \
  "http://${APPLIANCE_HOST}/v2/management/host/realtime/gpu/config"

Example Response

{
  "max_streams": 9
}
  • max_streams - the maximum number of concurrent realtime connections of either operating point (see note above on operating points in realtime)

Update the configuration

curl -X 'POST' \
  'https://${APPLIANCE_HOST}/v2/management/host/realtime/gpu/config' \
  -H 'accept: */*' \
  -H 'Content-Type: application/json' \
  -d '{
  "max_streams": 30
}'

Standard Operating Point

  • max_streams - 30

Enhanced Operating Point

  • max_streams - 9
Note

The above recommended configuration was based on a 8 Core 32GB Machine with a T4 GPU running english transcriptions of a single operating point and transcription config, Based on your hardware/requirements there may be more appropriate values that provide a greater throughput.

Querying the GPU

You can log on to the Appliance and run detailed queries with nvidia-smi, the NVidia GPU utility, but basic information is available via the Management API.

curl -L -u admin:$PWD -X 'GET' \
  "http://${APPLIANCE_HOST}/v2/management/nodeinfo"

This command will return the labels on the Kubernetes node. If a GPU has been successfully detected, there will be labels relating to the GPU, prefixed with nvidia.com.

{
  "author": "Speechmatics",
  "beta.kubernetes.io/arch": "amd64",
  "beta.kubernetes.io/instance-type": "k3s",
  "beta.kubernetes.io/os": "linux",
  "feature.node.kubernetes.io/cpu-cpuid.ADX": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AESNI": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AVX": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AVX2": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AVX512BW": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AVX512CD": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AVX512DQ": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AVX512F": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AVX512VL": "true",
  "feature.node.kubernetes.io/cpu-cpuid.AVX512VNNI": "true",
  "feature.node.kubernetes.io/cpu-cpuid.CMPXCHG8": "true",
  "feature.node.kubernetes.io/cpu-cpuid.FLUSH_L1D": "true",
  "feature.node.kubernetes.io/cpu-cpuid.FMA3": "true",
  "feature.node.kubernetes.io/cpu-cpuid.FXSR": "true",
  "feature.node.kubernetes.io/cpu-cpuid.FXSROPT": "true",
  "feature.node.kubernetes.io/cpu-cpuid.HYPERVISOR": "true",
  "feature.node.kubernetes.io/cpu-cpuid.IA32_ARCH_CAP": "true",
  "feature.node.kubernetes.io/cpu-cpuid.IBPB": "true",
  "feature.node.kubernetes.io/cpu-cpuid.LAHF": "true",
  "feature.node.kubernetes.io/cpu-cpuid.MD_CLEAR": "true",
  "feature.node.kubernetes.io/cpu-cpuid.MOVBE": "true",
  "feature.node.kubernetes.io/cpu-cpuid.OSXSAVE": "true",
  "feature.node.kubernetes.io/cpu-cpuid.SPEC_CTRL_SSBD": "true",
  "feature.node.kubernetes.io/cpu-cpuid.STIBP": "true",
  "feature.node.kubernetes.io/cpu-cpuid.SYSCALL": "true",
  "feature.node.kubernetes.io/cpu-cpuid.SYSEE": "true",
  "feature.node.kubernetes.io/cpu-cpuid.X87": "true",
  "feature.node.kubernetes.io/cpu-cpuid.XGETBV1": "true",
  "feature.node.kubernetes.io/cpu-cpuid.XSAVE": "true",
  "feature.node.kubernetes.io/cpu-cpuid.XSAVEC": "true",
  "feature.node.kubernetes.io/cpu-cpuid.XSAVEOPT": "true",
  "feature.node.kubernetes.io/cpu-cpuid.XSAVES": "true",
  "feature.node.kubernetes.io/cpu-hardware_multithreading": "false",
  "feature.node.kubernetes.io/cpu-model.family": "6",
  "feature.node.kubernetes.io/cpu-model.id": "85",
  "feature.node.kubernetes.io/cpu-model.vendor_id": "Intel",
  "feature.node.kubernetes.io/kernel-config.NO_HZ": "true",
  "feature.node.kubernetes.io/kernel-config.NO_HZ_IDLE": "true",
  "feature.node.kubernetes.io/kernel-version.full": "5.15.0-76-generic",
  "feature.node.kubernetes.io/kernel-version.major": "5",
  "feature.node.kubernetes.io/kernel-version.minor": "15",
  "feature.node.kubernetes.io/kernel-version.revision": "0",
  "feature.node.kubernetes.io/pci-10de.present": "true",
  "feature.node.kubernetes.io/pci-15ad.present": "true",
  "feature.node.kubernetes.io/storage-nonrotationaldisk": "true",
  "feature.node.kubernetes.io/system-os_release.ID": "ubuntu",
  "feature.node.kubernetes.io/system-os_release.VERSION_ID": "22.04",
  "feature.node.kubernetes.io/system-os_release.VERSION_ID.major": "22",
  "feature.node.kubernetes.io/system-os_release.VERSION_ID.minor": "04",
  "kubernetes.io/arch": "amd64",
  "kubernetes.io/hostname": "appliance",
  "kubernetes.io/os": "linux",
  "node-role.kubernetes.io/control-plane": "true",
  "node-role.kubernetes.io/master": "true",
  "node.kubernetes.io/instance-type": "k3s",
  "nvidia.com/cuda.driver.major": "525",
  "nvidia.com/cuda.driver.minor": "116",
  "nvidia.com/cuda.driver.rev": "04",
  "nvidia.com/cuda.runtime.major": "12",
  "nvidia.com/cuda.runtime.minor": "0",
  "nvidia.com/gfd.timestamp": "1688727340",
  "nvidia.com/gpu.compute.major": "7",
  "nvidia.com/gpu.compute.minor": "5",
  "nvidia.com/gpu.count": "1",
  "nvidia.com/gpu.deploy.container-toolkit": "true",
  "nvidia.com/gpu.deploy.dcgm": "true",
  "nvidia.com/gpu.deploy.dcgm-exporter": "true",
  "nvidia.com/gpu.deploy.device-plugin": "true",
  "nvidia.com/gpu.deploy.driver": "true",
  "nvidia.com/gpu.deploy.gpu-feature-discovery": "true",
  "nvidia.com/gpu.deploy.node-status-exporter": "true",
  "nvidia.com/gpu.deploy.operator-validator": "true",
  "nvidia.com/gpu.family": "turing",
  "nvidia.com/gpu.machine": "VMware-Virtual-Platform",
  "nvidia.com/gpu.memory": "15360",
  "nvidia.com/gpu.present": "true",
  "nvidia.com/gpu.product": "Tesla-T4",
  "nvidia.com/gpu.replicas": "1",
  "nvidia.com/mig.capable": "false",
  "nvidia.com/mig.strategy": "single"
}